首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   745篇
  免费   26篇
  国内免费   1篇
化学   661篇
晶体学   5篇
力学   6篇
数学   66篇
物理学   34篇
  2023年   7篇
  2022年   4篇
  2021年   20篇
  2020年   8篇
  2019年   13篇
  2018年   9篇
  2017年   7篇
  2016年   12篇
  2015年   16篇
  2014年   27篇
  2013年   40篇
  2012年   55篇
  2011年   63篇
  2010年   27篇
  2009年   18篇
  2008年   38篇
  2007年   49篇
  2006年   46篇
  2005年   41篇
  2004年   42篇
  2003年   41篇
  2002年   31篇
  2001年   10篇
  2000年   10篇
  1999年   9篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1982年   5篇
  1981年   3篇
  1979年   4篇
  1977年   4篇
  1975年   4篇
  1964年   2篇
  1959年   2篇
  1937年   3篇
  1932年   7篇
  1928年   2篇
  1927年   2篇
  1925年   4篇
  1911年   4篇
  1908年   3篇
排序方式: 共有772条查询结果,搜索用时 62 毫秒
81.
82.
Aptamers constitute an emerging class of molecules designed and selected to recognize any given target that ranges from small compounds to large biomolecules, and even cells. However, the underlying physicochemical principles that govern the ligand‐binding process still have to be clarified. A major issue when dealing with short oligonucleotides is their intrinsic flexibility that renders their active conformation highly sensitive to experimental conditions. To overcome this problem and determine the best experimental parameters, an approach based on the design‐of‐experiments methodology has been developed. Here, the focus is on DNA aptamers that possess high specificity and affinity for small molecules, L ‐tyrosinamide, and adenosine monophosphate. Factors such as buffer, pH value, ionic strength, Mg2+‐ion concentration, and ligand/aptamer ratio have been considered to find the optimal experimental conditions. It was then possible to gain new insight into the conformational features of the two ligands by using ligand‐observed NMR spectroscopic techniques and molecular mechanics.  相似文献   
83.
A room-temperature procedure using saccharin as catalyst has been described for the cyclocondensation of different 1,2-arylenediamines with various 1,2-dicarbonyl compounds, yielding either quinoxalines or pyrido[2,3-b]pyrazines. The reactions proceed in very short reaction times in methanol, and the target heterocycles are isolated in quantitative yields after addition of water, filtration, and drying. Substituted pyrido[2,3-b]pyrazines can also be reached regioselectively by reacting α-ketoaldehydes with 2,3-diaminopyridine.

[Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for the following free supplemental resource(s): Full experimental and spectral details.]  相似文献   

84.
Compared to other analytical methods, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) presents several unique advantages for the structural characterization of degradation products of carbohydrates. Our final goal is to implement this technique as a high-throughput platform, with the aim of exploring natural bio-diversity to discover new carbohydrate depolymerizing enzymes. In this approach, a variety of carbohydrates will be used as enzymes substrates and MALDI-MS will be employed to monitor the oligosaccharides produced. One drawback of MALDI, however, is that the choice of the matrix is largely dependent on the chemical properties of the analyte. In this context, our objective in the present work was to find the smallest set of MALDI matrices able to detect chemically heterogeneous oligosaccharides. This was done through the performance evaluation of more than 40 MALDI matrices preparations. Homogeneity of analyte-matrix deposits was considered as a critical feature, especially since the final objective is to fully automate the analyses. Evaluation of the matrices was done by means of a rigorous statistical approach. Amongst all tested compounds, our work proposes the use of the DHB/DMA ionic matrix as the most generic matrix, for rapid detection of a variety of polysaccharides including neutral, anionic, methylated, sulfated, and acetylated compounds. The selected matrices were then used to screen crude bacterial incubation media for the detection of enzymatic degradation products.  相似文献   
85.
A series of chloro- and bromopyridines have been deprotometalated by using a range of 2,2,6,6-tetramethylpiperidino-based mixed lithium-metal combinations. Whereas lithium-zinc and lithium-cadmium bases afforded different mono- and diiodides after subsequent interception with iodine, complete regioselectivities were observed with the corresponding lithium-copper combination, as demonstrated by subsequent trapping with benzoyl chlorides. The obtained selectivities have been discussed in light of the CH acidities of the substrates, determined both in the gas phase and as a solution in THF by using the DFT B3LYP method.  相似文献   
86.
In this work we report on the design, microfabrication and analytical performances of a new electrochemical sensor array (ESA) which allows for the first time the simultaneous amperometric detection of nitric oxide (NO) and peroxynitrite (ONOO(-)), two biologically relevant molecules. The on-chip device includes individually addressable sets of gold ultramicroelectrodes (UMEs) of 50 μm diameter, Ag/AgCl reference electrode and gold counter electrode. The electrodes are separated into two groups; each has one reference electrode, one counter electrode and 110 UMEs specifically tailored to detect a specific analyte. The ESA is incorporated on a custom interface with a cell culture well and spring contact pins that can be easily interconnected to an external multichannel potentiostat. Each UME of the network dedicated to the detection of NO is electrochemically modified by electrodepositing thin layers of poly(eugenol) and poly(phenol). The detection of NO is performed amperometrically at 0.8 V vs. Ag/AgCl in phosphate buffer solution (PBS, pH = 7.4) and other buffers adapted to biological cell culture, using a NO-donor. The network of UMEs dedicated to the detection of ONOO(-) is used without further chemical modification of the surface and the uncoated gold electrodes operate at -0.1 V vs. Ag/AgCl to detect the reduction of ONOOH in PBS. The selectivity issue of both sensors against major biologically relevant interfering analytes is examined. Simultaneous detection of NO and ONOO(-) in PBS is also achieved.  相似文献   
87.
Thirty litres of fermentation broth was extracted from the newly isolated Streptomyces sp. strain TN17 and various separation and purification steps led to the isolation of three pure bioactive compounds (1-3). Compound 1: cyclo (L-Leu-L-Arg), a diketopiperazine 'DKP' derivative; 2: di-(2-ethylhexyl) phthalate, a phthalate derivative; and 3: cyclo 1-[2-(cyclopentanecarbonyl-3-phenyl-propionyl]-pyrrolidine-2-carboxylic acid (1-carbamoyl-propyl)-amide, a cyclic tetrapeptide derivative. The chemical structure of these three active compounds was established on the basis of spectroscopic studies (MS and NMR) and by comparison with data from the literature. According to our biological studies, the pure compounds (1-3) possess antibacterial and antifungal activities.  相似文献   
88.
In this work, a new biosensor was prepared through immobilization of bovine liver catalase in a photoreticulated poly (vinyl alcohol) membrane at the surface of a conductometric transducer. This biosensor was used to study the kinetics of catalase–H202 reaction and its inhibition by cyanide. Immobilized catalase exhibited a Michaelis–Menten behaviour at low H202 concentrations (< 100 mM) with apparent constant KMapp = 84 ± 3 mM and maximal initial velocity VMapp = 13.4 μS min? 1. Inhibition by cyanide was found to be non-competitive and inhibition binding constant Ki was 13.9 ± 0.3 μM. The decrease of the biosensor response by increasing cyanide concentration was linear up to 50 μM, with a cyanide detection limit of 6 μM. In parallel, electrochemical characteristics of the catalase/PVA biomembrane and its interaction with cyanide were studied by cyclic voltammetry and impedance spectroscopy. Addition of the biomembrane onto the gold electrodes induced a significant increase of the interfacial polarization resistance RP. On the contrary, cyanide binding resulted in a decrease of Rp proportional to KCN concentration in the 4 to 50 μM range. Inhibition coefficient I50 calculated by this powerful label-free and substrate-free technique (24.3 μM) was in good agreement with that determined from the substrate-dependent conductometric biosensor (24.9 μM).  相似文献   
89.
During recent decades, extensive industrialisation and farming associated with improper waste management policies have led to the release of a wide range of toxic compounds into aquatic ecosystems, causing a rapid decrease of world freshwater resources and thus requiring urgent implementation of suitable legislation to define water remediation and protection strategies. In Europe, the Water Framework Directive aims to restore good qualitative and quantitative status to all water bodies by 2015. To achieve that, extensive monitoring programmes will be required, calling for rapid, reliable and cost-effective analytical methods for monitoring and toxicological impact assessment of water pollutants. In this context, whole cell biosensors appear as excellent alternatives to or techniques complementary to conventional chemical methods. Cells are easy to cultivate and manipulate, host many enzymes able to catalyse a wide range of biological reactions and can be coupled to various types of transducers. In addition, they are able to provide information about the bioavailability and the toxicity of the pollutants towards eukaryotic or prokaryotic cells. In this article, we present an overview of the use of whole cells, mainly bacteria, yeasts and algae, as sensing elements in electrochemical biosensors with respect to their practical applications in water quality monitoring, with particular emphasis on new trends and future perspectives. In contrast to optical detection, electrochemical transduction is not sensitive to light, can be used for analysis of turbid samples and does not require labelling. In some cases, it is also possible to achieve higher selectivities, even without cell modification, by operating at specific potentials where interferences are limited.  相似文献   
90.
Trichloroethylene (TCE), a suspected human carcinogen, is one of the most common volatile groundwater contaminants. Many different methodologies have already been developed for the determination of TCE and its degradation products in water, but most of them are costly, time-consuming and require well-trained operators. In this work, a fast, sensitive and miniaturised whole cell conductometric biosensor was developed for the determination of trichloroethylene. The biosensor assembly was prepared by immobilising Pseudomonas putida F1 bacteria (PpF1) at the surface of gold interdigitated microelectrodes through a three-dimensional alkanethiol self-assembly monolayer/carbon nanotube architecture functionalised with Pseudomonas antibodies. The biosensor response was linear from 0.07 to 100 μM of TCE (9–13,100 μg L−1). No significant loss of the enzymatic activity was observed after 5 weeks of storage at 4 °C in the M457 pH 7 defined medium (two or three measurements per week). Ninety-two per cent of the initial signal still remained after 7 weeks. The biosensor response to TCE was not significantly affected by cis-1,2-dichloroethylene and vinyl chloride and, in a limited way, by phenol. Toluene was the major interference found. The bacterial biosensor was successfully applied to the determination of TCE in spiked groundwater samples and in six water samples collected in an urban industrial site contaminated with TCE. Gas chromatography–mass spectrometric analysis of these samples confirmed the biosensor measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号